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Goal

Automatically detect outliers in the line-by-line data of pension funds and 

insurers using machine learning techniques
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Agenda

• Why detecting outliers

• Motivation

• Model approach

• From data to model

• Results and performance

• Use cases for actuaries
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Detecting outliers?

Natural causes of outliers in data

1. Data error: wrong measurement data observation

2. Natural occurrence but different than expected

Problems caused by outliers

1. Outliers in the data influence model fitting (linear models)

2. Outliers can inflate metrics which give higher weights to large 
errors (like RMSE).
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Why detecting outliers?

Outliers can be informative

1. Outliers that are data errors influence results

2. Outliers that are not errors (anomalies), are informative: show 
behavior that is different from “expected” / the bulk of data

A light bulb surrounded by many black ones
photo – Innovation Image on Unsplash

https://unsplash.com/photos/a-light-bulb-surrounded-by-many-black-ones-JOMmTMTC4uw
https://unsplash.com/photos/a-light-bulb-surrounded-by-many-black-ones-JOMmTMTC4uw
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Background project
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FTK data

• Pension 
funds report 
asset data

Verslagstaten 

• Reports in 
dataloop 

•Rule-based
checks

Dataloop
• Used in 

supervision

Used in 
supervision

Re-reporting in 
case of data errors 
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Characteristics asset 

data

Motivation for
using ML 
algorithm

Large 
amounts 
of data 

Sensitive 
to errors 
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Rule based controls
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Rule based controls
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Rule based controls
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Rule based controls are not enough



| DNB PUBLIC |

Motivation for using ML algorithm

Outlier detection model 

- Automatically detect errors 

- Speed up data cleaning process 

- Support rule-based controls 

- Next step 'anomaly' detection
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Models
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Outlier detection

Ensemble learner

1. Make groups for the detection of outliers

2. Detect outliers with an ensemble of 3 or 3+ methods

3. Define a total score for each observation based on the different methods

4. Highest scoring observations are potential outliers



| DNB PUBLIC |

Ensemble 
methods

Interquantile range

Nearest neighbourgh distance (2)

Local outlier factor (0)

Kmeans (0)

XGboost
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Interquantile range

𝑖𝑞𝑟 =
𝑥 − (𝑃80 − 𝑃20)/2

𝑃80 − 𝑃20
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Local outlier factor

18

𝑙𝑜𝑓 =
σ𝑦∈𝑁𝑥

𝑑𝑦

𝑁𝑥
×
1

𝑑𝑥
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Outlier detectie

Nearest neighbourgh distance
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𝑛𝑛 = 𝑥 − 𝑥𝑛𝑛
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Kmeans

K-means identifies k number of centroids

and allocates every data point to the nearest cluster

keeping the centroids as small as possible.

Towards outlier score:

Outliers are scored by calculating their z-score,

which is defined as the observation value minus 

the centroid divided by the centroid’s standard deviation.
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XGBoost

Is a gradient-boosting decision tree algorithm.

It trains a number of trees sequentially and

uses the fit of the previous tree to improve

next fit. 

It combines all the trees to create

the ultimate predicted value.

As predictors, we (can) use several

explanatory variables, like sector, 

credit quality and valuta.
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Scoring
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Approach: data to
model 



| DNB PUBLIC |

Approach
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Data 
processing

Outlier 
detection

Reinforcement 
learning

Potential 
outliers

Data
reporting
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Approach
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Data 
processing

Outlier 
detection

Reinforcement 
learning

Potential 
outliers

Data
reporting

- Combine reporting data
- Define waarde per eenheid

- Difference w.r.t. median of previous period
- Remove stock splits
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Data preprocessing

- Define ‘waarde per eenheid’ 

- Median of previous period

- Percentage difference with previous period

- Create categorical variables

- Stock splits cleaning
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relatienummer

URI

aantal

nominaal_bedrag

aankoopwaarde 

marktwaarde 

aangegroeide_rente

land

valuta

CIC

rating

kredietkwalitei

interne_rating

prijs_per_eenheid

percentage_nominaal_bedrag

URI_cat

sector_main

sector_sub

sector_sub_sub

waarde_per_eenheid

waarde_per_eenheid_dt
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Approach
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Data 
processing

Outlier 
detection

Reinforcement 
learning

Potential 
outliers

SII/FTK 
reporting
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Approach
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Data 
processing

Outlier 
detection

Reinforcement 
learning

Potential 
outliers

SII/FTK 
reporting

- Judge which points are potential outliers

- Report the outliers back to the institutions
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Approach
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Data 
processing

Outlier 
detection

Reinforcement 
learning

Potential 
outliers

SII/FTK 
reporting

Optimise the parameters within the model based

on the feedback from the institutions
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Reinforcement learning

Reinforcement Learning (RL) is a ML technique that 
enables us to create a model that learns by trial 
and error through exposure with its environment. 
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Reinforcement learning

• Our data is not on forehand classified: we do not know whether a point is an

outlier or not:

• Do we deal with red or blue fish?
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Reinforcement learning

• Our data is not on forehand classified: we do not know whether a point is an outlier or 

not:

• Thus, setting optimal model coefficients on forehand is difficult

• Let the model learn over time, when we know which outliers identified: using

reinforcement learning

Outlier 
detection

Reinforcement 
learning

Potential 
outliers
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Our reinforcement learner
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Our reinforcement learner

Outlier 
detection

Outlier 
evaluation

• The results are shared with the institutions, who 
file ammended reporting data
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Our reinforcement learner

• The differences between the initial and amended reporting, and 

the outlier scores are recorded

Outlier 
detection

Agent model

Potential 
outliers
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Our reinforcement learner

• The differences between the initial and amended reporting, and 

the outlier scores are recorded

Outlier 
detection

Agent model

Potential 
outliers
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Our reinforcement learner

• The agent optimises the parameters of the outlier

detection algorithm

Outlier 
detection

Agent model

Potential 
outliers

model
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Our reinforcement learner

• Parameters of the outlier detection are updated

Outlier 
detection

Agent model

Potential 
outliers

model
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Want to know
more?

Read the paper!
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Results
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Same asset, different value?

43

Fonds Periode aantal
Aankoop-
waarde

Marktwaarde Asset
Prijs per 
eenheid

Waarde
per 

eenheid

1 2018Q1 2072 €  27,800.93 €   41,109.01 French company €  18.32 €    19.8

2 2018Q1 0 € - €     2,100.76 French company €   18.32 €    18.3

3 2018Q1 4598 € 51,130.96 €   84,200,23 French company €   18.32 €    18.3

*Examples with fictional data
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Did they sell the assets or not?
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periode aantal aankoopwaarde marktwaarde asset
waarde per 

eenheid

2020Q4
20600

€    81,701.17
€ 121,942.05 American company €                  5.92

2021Q1
19400

€     89,705.56 € 130,008.09 American company €                  6.70

2021Q2
18700

€       70,528.19 € 130,607.77 American company €                6.98

2021Q3
16003

€ 288,343.92 € 1,310,654.20 American company €                81.90

2021Q4
1

€                 1.08 € 1,200,899.20 American company € 1,200,899.20

*Examples with fictional data
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Potential of outlier
detection
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Use cases outlier detection for actuaries

Fraud in claims Outliers in 
reserving data

Data cleaning
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Questions?
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